








In order to maintain the vacancy concentration everywhere near equilibrium
vacancies must be created on the B-rich side and destroyed on the A-rich side.

It is the net flux of vacancies across the middle of the diffusion couple
that gives rise to movement of the lattice. Edge dislocations can
provide a convenient source or sink for vacancies. Vacancies can be absorbed by the 
extra half-plane of the edge dislocation shrinking while growth of the plane can 
occur by the emission of vacancies. If this or a similar mechanism operates on each 
side of the diffusion couple then the required flux of vacancies can be generated

A flux of vacancies causes the atomic planes to move through the specimen



The velocity at which any given lattice plane moves, v, can be related to
the flux of vacancies crossing it. If the plane has an area A, during a small
time interval δt, the plane will sweep out a volume of Avdt containing Av dt C0 atoms.

This number of atoms is removed by the total number of vacancies crossing the plane
in the same time interval, i.e. Jv A ⋅δt , giving

Since the mole fraction of A, XA = CA/C0

Consider a thin slice of material δx thick at a 
fixed distance x from one end of the couple 
which is outside the diffusion zone as shown 
in Figure



The total flux of A atoms across a stationary plane with respect to the specimen
is the sum of two contributions: (i) a diffusive flux, JA =-DA ∂CA/∂x  due to 
diffusion relative to the lattice, and (ii) a flux vCA due to the velocity of the lattice 
in which diffusion is occurring. Therefore:

By combining this equation with

where XA=CA/C0 and XB=CB/C0

This can be simplified by defining an interdiffusion coefficient ෩𝐷
as



so that Fick’s first law becomes

Likewise;

where

the interdiffusion coefficient ෩𝐷 for substitutional alloys depends on DA

and DB whereas in interstitial diffusion DB alone is needed.



The relationship between the various diffusion coefficients in the 
Cu-Ni system at 1000°C







ATOMIC MOBILITY

Fick’s first law is based on the assumption that diffusion eventually stops, that is
equilibrium is reached, when the concentration is the same everywhere. However, this 
situation is never true in practice because real materials always contain lattice defects 
such as grain boundaries, phase boundaries and dislocations. Some atoms can lower 
their free energies if they migrate to such defects and at ‘equilibrium’ their 
concentrations will be higher in the vicinity of the defect than in the matrix. Diffusion 
in the vicinity of these defects is therefore affected by both the concentration gradient
and the gradient of the interaction energy. Fick’s law alone is insufficient to describe 
how the concentration will vary with distance and time.



As an example consider the case of a solute atom that is too big or too
small in comparison to the space available in the solvent lattice. The 
potential energy of the atom will then be relatively high due to the strain 
in the surrounding matrix. However, this strain energy can be reduced if 
the atom is located in a position where it better matches the space 
available, e.g. near dislocations and in boundaries, where the matrix is 
already distorted.

Segregation of atoms to grain boundaries, interfaces and dislocations is
of great technological importance. For example the diffusion of carbon or
nitrogen to dislocations in mild steel is responsible for strain ageing and 
blue brittleness. 
The segregation of impurities such as Sb, Sn, P and As to grain boundaries in 
low-alloy steels produces temper embrittlement. 
Segregation to grain boundaries affects the mobility of the boundary and 
has pronounced effects on recrystallization, texture and grain growth. 
Similarly the rate at which phase transformations occur is sensitive to 
segregation at dislocations and interfaces.



The problem of atom migration can be solved by considering the thermodynamic
condition for equilibrium; namely that the chemical potential of an atom must be 
the same everywhere. Diffusion continues in fact until this condition is satisfied.

Therefore it seems reasonable to suppose that in general the flux of atoms at any 
point in the lattice is proportional to the chemical potential gradient.

An alternative way to describe a flux of atoms is to consider a net drift velocity 
(v) superimposed on the random jumping motion of each diffusing atom. The 
drift velocity is simply related to the diffusive flux via the equation

Since atoms always migrate so as to remove differences in chemical potential it is 
reasonable to suppose that the drift velocity is proportional to the local chemical
potential gradient,

where MB is a constant of proportionality known as the atomic mobility.



Since chemical potential is energy and the derivative of it with respect to 
distance is effectively the chemical ‘force’ causing the atom to migrate. By
combining last 2 equations;

Intuitively it seems that the mobility of an atom and its diffusion coefficient must 
be closely related. The relationship can be obtained by relating ∂μ/∂x to ∂C/∂x for 
a stress-free solid solution. Using Equation 

and CB = XB/Vm , above flux equation becomes



Comparison with Fick’s first law gives the required relationship

Similarly

For ideal or dilute solutions (XB → 0), γB is a constant and the term 
in brackets is unity, i.e.



Tracer Diffusion in Binary Alloys

The use of radioactive tracers were described in connection with self-diffusion
in pure metals. It is, however, possible to use radioactive tracers to determine the 
intrinsic diffusion coefficients of the components in an alloy.
The method is similar to that shown in Figure below, except that a small quantity
of a suitable radioactive tracer, e.g. B*, is allowed to diffuse into a homogeneous
bar of A/B solution. The value obtained for D from is the tracer diffusion 
coefficient D*B



Such experiments have been carried out on a whole series of gold-nickel alloys at 
900°C. At this temperature gold and nickel are completely soluble in each other. 

Since radioactive isotopes are chemically identical it might appear at first sight that 
the tracer diffusivities (D*Au and D*Ni) should be identical to the intrinsic 
diffusivities (DAu and DNi) determined by marker movement in a diffusion couple.

However, it can be demonstrated that this is not the case. D*Au gives the rate at 
which Au* (or Au) atoms diffuse in a chemically homogeneous alloy, whereas DAu

gives the diffusion rate of Au when a concentration gradient is present.



The Au-Ni phase diagram contains a miscibility gap at low temperatures implying 
that ΔHmix > 0 (the gold and nickel atoms ‘dislike’ each other).

Therefore, whereas the jumps made by Au atoms in a chemically homogeneous
alloy will be equally probable in all directions, in a concentration gradient they will 
be biased away from the Ni-rich regions. (because they dont like eacother)

The rate of homogenization will therefore be slower in the second case, i.e. DAu < D*Au

and DNi < D*Ni . On the other hand since the chemical potential gradient is the driving 
force for diffusion in both types of experiment it is reasonable to suppose that the 
atomic mobilities are not affected by the concentration gradient. If this is true the 
intrinsic chemical diffusivities and tracer diffusivities can be related as follows.



where F is the thermodynamic factor, i.e.

In the case of the Au-Ni system, diffusion 
couple experiments have also been 
carried out so that data are available for 
the interdiffusion coefficient ෩𝐷 , the full 
line in Figure

It is interesting to note how the diffusion coefficients are strongly composition 
dependent. There is a difference of about three orders of magnitude across the 
composition range. This can be explained by the lower liquidus temperature of the 
Au-rich compositions. Also, with the lower melting temperature, Au diffuses faster
than Ni at all compositions



High-Diffusivity Paths

In Atomic Mobility section, the diffusion of atoms towards or away from
dislocations, interfaces, grain boundaries and free surfaces was considered. In this 
section diffusion along these defects will be discussed.

All of these defects are associated with a more open structure and it has been 
shown experimentally that the jump frequency for atoms migrating along these 
defects is higher than that for diffusion in the lattice. It will become apparent that 
under certain circumstances diffusion along these defects can be the dominant 
diffusion path.

Diffusion along Grain Boundaries and Free Surfaces

It is found experimentally that 
diffusion along grain boundaries and 
free surfaces can be described by

where Db and Ds are the grain boundary and surface diffusivities and Db0 and Ds0 are the 
frequency factors. Qb and Qs are the experimentally determined values of the activation 
energies for diffusion. 



In general, at any temperature the magnitudes of Db and Ds relative to the 
diffusivity through defect-free lattice Dl, are such that

This means the relative ease with which atoms can migrate along free surfaces, 
grain boundaries and through the lattice. Surface diffusion can play an important 
role in many metallurgical phenomena, but in an average metallic specimen the 
total grain boundary area is much greater than the surface area so that grain 
boundary diffusion is usually most important.
The effect of grain boundary diffusion can be illustrated by considering a
diffusion couple made by welding together two metals, A and B, as shown
in Figure



A atoms diffusing along the boundary will be able to penetrate much deeper than 
atoms which only diffuse through the lattice. In addition, as the concentration of 
solute builds up in the boundaries atoms will also diffuse from the boundary into 
the lattice.

Points in the lattice close to grain boundaries can receive solute via the high 
conductivity path much more rapidly than if the boundaries were absent. Rapid 
diffusion along the grain boundaries increases the mean concentration in a slice 
such as dx in Figure and thereby produces an increase in the apparent diffusivity in 
the material as a whole. 

Consider now under what conditions grain boundary diffusion is important



For simplicity let us take a case of steady-state diffusion through a sheet of material 
in which the grain boundaries are perpendicular to the sheet as shown in Figure. 

Assuming that the concentration gradients in the lattice and along the boundary are 
identical, the fluxes of solute through the lattice Jl and along the boundary Jb will be 
given by



However the contribution of grain boundary diffusion to the total flux through 
the sheet will depend on the relative cross-sectional areas through which the 
solute is conducted.
If the grain boundary has an effective thickness δ and the grain size is d the total 
flux will be given by

Thus the apparent diffusion coefficient in this case

It can be seen that the relative importance of lattice and grain boundary
diffusion depends on the ratio Dbδ/Dld. When Dbδ > Dld diffusion through
the lattice can be ignored in comparison to grain boundary diffusion



The effective width of a grain boundary is ∼0.5 nm. Grain sizes on the other
hand can vary from ∼1 to 1000 μm and the effectiveness of the grain boundaries
will vary accordingly. The relative magnitudes of Dbd and Dld are
most sensitive to temperature. This is illustrated in Figure which shows
the effect of temperature on both Dl, and Db.

In general it is found that grain boundary diffusion becomes important below 
about 0.75-0.8 Tm, where Tm is the equilibrium melting temperature in Kelvin



Diffusion along Dislocations

The dislocations effectively act as pipes along which atoms can diffuse with a 
diffusion coefficient Dp. The contribution of dislocations to the total diffusive flux 
through a metal will of course depend on the relative crossectional areas of pipe 
and matrix. Using the simple model illustrated in Figure, it can easily be shown 
that the apparent diffusivity through a single crystal containing dislocations, Dapp, 
is related to the lattice diffusion coefficient by D

where g is the cross-sectional area of ‘pipe’ per unit area of matrix. In a well
annealed material there are roughly 105 dislocations mm−2. Assuming that the 
cross-section of a single pipe accommodates about 10 atoms while the matrix
contains about 1013 atoms mm−2, makes g ≃ 10–7.



At high temperatures diffusion through the lattice is rapid and gDp/Dl is very small 
so that the dislocation contribution to the total flux of atoms is negligible.

However, since the activation energy for pipe diffusion is less than for lattice 
diffusion, Dl decreases much more rapidly than Dp with decreasing temperature, 
and at low temperatures gDp/Dl can become so large that the apparent diffusivity 
is entirely due to diffusion along dislocations.


